Core/Shell Nanocomposites Produced by Superfast Sequential Microfluidic Nanoprecipitation.

نویسندگان

  • Dongfei Liu
  • Hongbo Zhang
  • Salvatore Cito
  • Jin Fan
  • Ermei Mäkilä
  • Jarno Salonen
  • Jouni Hirvonen
  • Tiina M Sikanen
  • David A Weitz
  • Hélder A Santos
چکیده

Although a number of techniques exist for generating structured organic nanocomposites, it is still challenging to fabricate them in a controllable, yet universal and scalable manner. In this work, a microfluidic platform, exploiting superfast (milliseconds) time intervals between sequential nanoprecipitation processes, has been developed for high-throughput production of structured core/shell nanocomposites. The extremely short time interval between the sequential nanoprecipitation processes, facilitated by the multiplexed microfluidic design, allows us to solve the instability issues of nanocomposite cores without using any stabilizers. Beyond high throughput production rate (∼700 g/day on a single device), the generated core/shell nanocomposites harness the inherent ultrahigh drug loading degree and enhanced payload dissolution kinetics of drug nanocrystals and the controlled drug release from polymer-based nanoparticles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Polythiophene/Manganese Dioxide Nanocomposites by In-situ Core-shell Polymerization Method and Study of their Physical Properties

The present research work describes an efficient method for facile synthesis of α-MnO2 nanorods by hydrothermal method and preparation of a series of polythiophene/manganese dioxide (PTh/MnO2) nanocomposites with various α-MnO2 ratios. These nanocomposites were fabricated by in-situ oxidative polymerization method using FeCl3 as oxidant, and characterized by Fourier transformed infrared (FT-IR)...

متن کامل

Maltodextrine nanoparticles loaded with polyphenolic extract from apple industrial waste: preparation, optimization and characterization

The main aim of this study was to prepare apple pomace polyphenolic extract (APPE- referred to as a core) loaded into biodegradable and commercially available natural polymer such as maltodextrin (MD-referred to as a shell). The polymer coating potentially improves its low stability and bioavailability and also directs the control release of the encapsulated material. The MD-nanoparticles (NPs)...

متن کامل

Synthesis, Optical Properties, and Photocatalytic Activity of One-Dimensional CdS@ZnS Core-Shell Nanocomposites

One-dimensional (1D) CdS@ZnS core-shell nanocomposites were successfully synthesized via a two-step solvothermal method. Preformed CdS nanowires with a diameter of ca. 45 nm and a length up to several tens of micrometers were coated with a layer of ZnS shell by the reaction of zinc acetate and thiourea at 180 °C for 10 h. It was found that uniform ZnS shell was composed of ZnS nanoparticles wit...

متن کامل

The Superior Surface Discharge Capacity of Core-Shell Tinoxide/Multi Walled Carbon Nanotube Nanocomposite Anodes for Li-Ion Batteries

In this study, tin/tinoxide/multiwalled carbon nanotube (Sn/SnO2/MWCNT) nanocomposites were produced as anode materials for Li-ion batteries by a two-step process. Metallic tin was evaporated onto free-standing MWCNT buckypapers having controlled porosity and subsequently rf plasma oxidized in Ar:O2 (1:1) gas mixture. Besides, Sn/SnO2 nanocomposites were produced in the same conditions onto sta...

متن کامل

Investigation on Spin Dependent Transport Properties of Core-Shell Structural Fe3O4/ZnS Nanocomposites for Spintronic Application

The core-shell structural Fe3O4/ZnS nanocomposites with controllable shell thickness were well-fabricated via seed-mediate growth method. Structural and morphological characterizations reveal the direct deposition of crystalline II-VI compound semiconductor ZnS shell layer on Fe3O4 particles. Spin dependent electrical transport is studied on Fe3O4/ZnS nanocomposites with different shell thickne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 17 2  شماره 

صفحات  -

تاریخ انتشار 2017